Code No.: 12222 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. II-Semester Main & Backlog Examinations, August-2023 Material Chemistry

(Common to CSE, AIML & IT)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

Q. No.	Stem of the question	M	L	CO	PO
1.	Explain the possible electrochemistry when CuCl ₂ solution is stored in a Zn container under standard conditions. (SRP va ues of Zn and Cu electrodes are -0.77 and 0.34 volts respectively.)		3	1	1,2,12
2.	0.01N KCl solution shows a resistance of 225 ohms in a conductivity cell. The specific conductance of 0.01N KCl at the temperature of experiment is 0.00141mho/cm. If 0.01N solution of an electrolyte shows a resistance of 60 ohms in the same cell, find its equivalent conductance.	2	3	1	1,2,12
3.	What are batteries? Classify them with appropriate examples.	2	2	2	1,2,7,12
4.	A battery weighing 25 g produces 3 amperes current per hour under a potential gradient of 1.5V. Compute its energy density and power density.	2	3	2	1,2,7,12
5.	Outline the reaction for the preparation of kevalar. Mention its properties and applications.	2	2	3	1,2,7,12
6.	Define glass transition temperature. What is its significance?	2	1	3	1,2,7,12
7.	Differentiate between thermotropic and lyotropic liquid crystals.	2	3	4	1,2,7,12
8.	List the applications of composite materials.	2	1	4	1,2,7,12
9.	What are the approaches for synthesis of nanomaterials? Mention two examples each.	2	2	5	1,2,7,12
10.	Properties of nano materials are different from their bulk materials – reason.	2	2	5	1,2,7,12
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Sketch neatly labeled graphs and explain the principle of determination of the equivalence point of a)CH ₃ COOH Vs NaOH b) Mixture of acids (HCl+ CH ₃ COOH) Vs strong base titration by conductometry.	4	2	1	1,2,7,12
	Construct a galvanic cell using Mg and Zn electrodes, write the cell reaction and calculate E.M.F and change in Gibb's free energy of the cell at 25°C when the concentrations of Mg ⁺² and Zn ²⁺ are 10 ⁻³ and 10 ⁻² M respectively. (SRP values of Mg and Zn electrodes are -2.36 and -0.76 volts respectively.)	4	3	1	1,2,7,12

403-X ::2:

Code No.: 12222 N/O

	C S I colomba	4	3	2	1,2,7,12
	Demonstrate the construction and electrochemistry of Leclanche cell. Write its merits and uses.				1,2,7,12
b)	Illustrate the construction and working of molten carbonate fuel cell and write its limitations and applications.	4	2	2	
13. a.)	Classify conducting polymers and discuss the mechanism of conduction in n-doped polyacetylene.	4	2	3	1,2,7,12
b)	Calculate the number average, weight average molecular weight and PDI of a PVC (molecular weight of monomer is 62.5) sample having 24, 30,46 and 24 molecules with degree of polymerization 180,200,240 and 270 respectively.	4	3	3	1,2,7,12
14. a)	Explain the manufacturing of composite materials by pultrusion method with a neatly labeled diagram. Mention its advantages.	4	1	4	1,2,7,12
b)	Discuss the molecular ordering in smectic and cholesteric liquid	4	2	4	1,2,7,12
15. a)	crystals. How do you synthesize nanomaterials by sol-gel method? Explain	4	2	5	1,2,7,12
b)	with appropriate reactions. Explain the working principle of atomic force microscope with	4	2	5	1,2,7,12
16. a)	block diagram. Discuss the construction and working of quinhydrone electrode. How do you determine pH of a solution using quinhydrone and	4	3	1	1,2,7,12
b	saturated calomel electrodes? How do you construct a Lithium-ion cell? Explain its functioning and applications.	4	3	2	1,2,7,12
1.7.	Answer any <i>two</i> of the following: Discuss the structural requirements of a polymer for bio degradation.	. 4	3	3	1,2,7,12
а	How do you synthesize poly lactic acid? What are its us and its		1	4	1,2,7,1
ł	Define composite materials and discuss their constituents. Explain glass fiber reinforced composites.			5	1,2,7,1
	Enlist the applications of carbon nanotubes and illustrate their synthesis by Arc-Discharge method with a neat diagram.		ogramm		

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

	Tayonamy Level - 1	20%
)	Blooms Taxonomy Level – 1	40%
i)	Blooms Taxonomy Level – 2	40%
)	Blooms Taxonomy Level - 3 & 4	4070
